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The stability of weak quasi-transverse shock waves in a weakly anisotropic elastic medium with respect to arbitrarily oriented 

perturbations is investigated in the linear approximation. It is shown that fast quasi-transverse shock waves are stable. 0 2001 

Elsevier Science Ltd. All rights reserved. 

The problem of the stability of quasi-transverse shock waves is of special interest in view of the non- 
uniqueness of the solutions of homogeneous self-similar problems for weakly anisotropic elastic media 
[l, 21. It has been shown that the non-uniqueness is due to the existence of “metastable” shock waves, 
for which the conservation laws do not prevent breakdown into a system of waves propagating with 
different velocities. The stability of quasi-transverse shock waves with respect to non-linear perturba- 
tions of the same direction, which remains a shock wave after introducing a viscosity into the equation 
(the Voigt model), was investigated using numerical experiments in [3, 41 and it was shown that 
“metastable” shock waves are stable with respect to perturbations whose amplitude is with the shock 
wave amplitude. 

In this paper, we consider the stability of shock waves in anisotropic elastic media with respect to 
arbitrarily oriented perturbations using the smallness of their amplitude, which enables us to write and 
investigate simplified equations for the perturbations. 

1. SIMPLIFIED EQUATIONS TO DESCRIBE WAVES 

HAVING SIMILAR ORIENTATIONS 

We will first consider one-dimensional quasi-transverse small-amplitude waves propagating in a uniform 
medium with normals directed in the positive direction of thex axis of a Cartesian system of coordinates, 
i.e. solutions which depend on x and t. These solutions can be described using the equations [5] 

LL+baR=() au 
at ax au, , a=l,2 (1.1) 

R(s.u2,=+g,u: +$f+& -3u: +u;)2, 
aw 

ua =Q 
ax 

Here x is the Lagrangian coordinate, w, are the components of the displacement vector in the direction 
of thexl andx-axes, orthogonal to thex axis and orthogonal to one another, andf, g and x are coefficients 
characterizing the elastic medium (g and x are coefficients characterizing the anisotropy and non-linearity 
of the medium, respectively). The quantity f represents the velocity of propagation of the perturbations 
when there is no non-linearity and no anisotropy. This quantity changes under a Galilean transformation. 

For the solutions of Eqs (1.1) the relations on discontinuities follow from the conditions of 
conservation of the flux of the transverse components of the momentum 

mu,, u2) 1 au, I = wb, I (1.2) 

The square brackets denote jumps in the quantities they enclose: [u,] = U: - u,, where u, is the value 
in front of the shock-wave front while U: is the value behind the front. Evolutionary shock waves for 
which the following inequalities are satisfied 
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will be called fast shock waves. Here Ci and C2 are the slow and fast velocities of the characteristics of 
system (1.1) The plus superscript will be omitted henceforth in many (rather obvious) cases. 

We will obtain a simplified system of equations for the two-dimensional motions of an elastic medium, 
for which all the variable quantities depend on the time t and the x coordinate and also depend only 
slightly on the Lagrangian coordinate y = x2. 

Bearing in mind that, small-amplitude, waves interact effectively only in the case of close wave 
numbers, we will consider the behaviour of waves with normals close to the positive direction of the x 
axis. The equations which describe these waves will be obtained by the method used previously to obtain 
the Kadomtsem-Petviashvili [6] and Khokhlov-Zabolotskii [‘i’] equations. The main assumption is that, 
in view of both the small non-linearity and anisotropy, and also the small deviation of a wave from the 
one-dimensional one, which depend only on x and t, the terms describing the influence of the above- 
mentioned effects should enter into the final equations independently. Hence, we can supplement 
Eqs (1.1) with terms which take into account the small non-uniformity, and are obtained assuming that 
there is no non-linearity and anisotropy. 

In the linear isotropic case, both components of the transverse perturbations must satisfy the 
same wave equations [8]. Assuming that the transverse perturbations depend on x, y and t as 
exp (i&x + ly - m)), we obtain 

n2 =f2(@+12) (1.4) 

where a is the velocity of propagation of transverse perturbations. 
Assuming that l2 s k2, retaining the principal term in 12/k2 and changing to a system of coordinates 

which moves along the x axis with a velocity W, such that b = f - W < f, we obtain 

kw=bk2+f1212, w=R-kU (1.5) 

As in [6,7], comparing relations (1.5) and (1.1) we conclude that the equations describing weakly non- 
uniform quasi-transverse waves in a weakly anisotropic elastic medium have the form 

a au 

[ 

a a4u,,u2) - -A+- 3 fa2u, 
ax af ax au, =-2 ay2 9 a42 (1.6) 

If the medium is viscoelastic, the effect of viscosity, like the non-linearity and other factors mentioned 
above, being small in the solutions investigated, the viscous terms can be written in the one-dimensional 
isotropic approximation, so that the equations for the quasi-transverse waves take the form 

a +daR(u~9U2)_V& _ f a2ua a au 
[ ax at ax au, ax2 1 2 ay2 

(1.7) 

where v is the kinematic coefficient of viscosity. 
In Eqs (1.6) and (1.7) R(uIu2) is the expression given in (1.1). However, in what follows we are going 

to use these equations in a system of coordinates moving with the shock wave, with a velocity W close 
to $ The corresponding Galilean transformation leads to the replacement off by b = f - W in the 
expression for R&i, u2). 

2. SMALL PERTURBATIONS 

To investigate the stability of a shock wave we need to have available solutions of the linearized equations 
behind and in front of the shock wave. We will linearize Eqs (1.6) about the uniform state u, = ul and 
write them in the form 

(2-l) 
au aua+p _L--f-, -=a I aV, ava au 

at ap ax 2 ay ax ay 

RO = a%,.U2) aw 
aP 

( 1 
au,au, ’ ‘a=-$ 

a$,y = 1.2 

“7 =u r” 
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Equations (2.1) were obtained from Eqs (1.6) integrated with respect to x, taking into account the 
assumption that the derivatives of the quantities u, vanish at infinity. Substituting into (2.1) expressions 
of the form 

u, = li, exp(i(kx + ly - of)) va = 6, exp(i(kx + fy - ot)) 

we obtain from the last pair of equations (2.1) 

ia = iQlk 

and from the first pair of the equations, taking relation (2.3) into account, we obtain 

(R,, -c)i& +R& =o, R,#, + (Rz2 - c)li, = 0 

Here, we have introduced the notation 

as a result of which Eqs (2.4) are identical with the equations describing the propagation of one- 
dimensional perturbations. Here c = c1,2 = C1,2-W are the velocities of the characteristics of the one- 
dimensional system, which are found from the quadratic equation obtained by equating the determinant 
of system (2.4) to zero. These quantities are real since the matrix Rap is symmetrical. The numbering 
is chosen so that 5l < c2. 

The quantities u, are found from (2.4) for each value of c = CQ. We will denote these quantities by 
r&!) and @. If we assume I and w to be known, the two values of k can be obtained from Eq. (2.5), 
which is quadratic in k. Here, we will assume that the quantities k, 6 k2 correspond to cl, while the 
quantities k3 s k4 correspond to c2. The quantities c, are found from Eqs (2.3). Hence, for specified 
1 and w we have four solutions of the form (2.2). System of equations (2.3) and (2.4) define 4 eigenvectors 
rl, r2, r3, r4, corresponding to k,, k2, k3 and k4. The components of these eigenvectors ur, u2, yl, u2 are 
such that 

q = (u, (‘),@,u;‘)l/k;, u$“llk.) , ’ i=1.2 

rj = (u, ‘2’~U~2’~U~2’1/kj~ U:2’llkj), j=3,4 (2.6) 

We will investigate which of these solutions correspond to waves arriving at and departing from the 
shock wave. 

Consider the velocity diagram, connecting it with the velocity of the unperturbed shock wave (see 
Fig. 1). Along the horizontal axis we have plotted the x-components of the velocities (normal to the 

Fig. 1 
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shock wave), and along the vertical axis we have plotted they-components (tangential to the shock wave). 
Along the vertical axis we have plotted the value of o/Z (I and o are assumed to be real here). Moreover, 
in the figure we show a diagram of the group velocities of small perturbations (representing, at t = 1, 
the position of small perturbation fronts, which develop from a point perturbation situated at the point 
0 at t = 0). These curves are similar to circles with radii close to a and centres lying at the point 
(-u, 0). 

To find the values of w/k it is sufficient to draw tangents to the group-velocity diagrams from the point 
(0, w/Z). These tangents intersect the horizontal axis at the point (w/k, 0). If we consider waves in the 
regionx < 0 (behind the shock wave), the perturbations arriving at the shock wave will be those which 
correspond to points lying to the right of the vertical axis in the figure (and for a specified value of w/l 
the points of contact mentioned above). If we consider the region x > 0 (in front of the shock wave), 
we obtain the converse. 

In the figure we show the situation behind a fast shock wave, when the value of w/l is fairly high. 
In this case there are four points of contact, to which four real values of k correspond. It is 
obvious that in this situation there is a single arriving wave which corresponds to c2 and a lower 
value of o/k, that is k = k4 (the larger of the values k3 and k4). Hence, in the case considered the 
departing waves correspond to ri, r2 and ~3. Since the fast shock wave propagates over the state ahead 
of it with a velocity greater than both values of c, there is no departing perturbations in front of 
the shock wave. 

When w/l is reduced (this quantity, as before, is assumed to be real), the two points of contact 
corresponding to c2 may disappear. In this case two real values of k disappear (after these points merge). 
Since we are considering analytical relations this means that there are two complex-conjugate values 
of k. One of these may be assumed to correspond to an arriving perturbation and the other to a 
departing one. The departing perturbation tends to zero at infinity, i.e. whenx c 0 we have Im k < 0 
for departing perturbations. We will denote this quantity by k3. Then, as in the case of real k, the vectors 
rl, r2 and r3 will correspond to perturbations departing from the shock wave. Note that the separation 
into arriving and departing perturbations has been carried out for real values of w, which is permissible 
because of the stability of the homogeneous solutions of Eqs (1.6). 

3. BOUNDARY CONDITIONS FOR PERTURBATIONS 
BEHIND A FAST SHOCK WAVE 

We will assume that the unperturbed position of the shock wave isx = 0. Suppose the perturbed position 
is given by the equation 

x = Qy,t) = (exp(i(fy-ox)) 

where 6 is a small quantity. In the linear apprqximation the vector of the normal n and the tangential 
vector 7 have the components { 1, -i&} and {i&, l), respectively. On the shock wave the displacements 
w, remain continuous. This can be written in the form of an equation in which the derivative of the 
discontinuity of displacement along the tangent is equated to zero 

(3.1) 

We will introduce notation for the discontinuity of the derivative with respect w, along the 
normal 

(Iual- ir~bal),,5 = aa (3.2) 

When writing the left-hand sides of Eqs (3.1) and (3.2) we have used expressions for the components 
of the vectors n and r and also the fact that u, and Y, are derivatives of w, with respect to the spatial 
coordinates. 

As can be seen from (3.1), the second term on the left-hand side of (3.2) is proportional to g2, and 
hence can be neglected in the linear approximation. Since the quantity ~[~?u,J&r] is also a second-order 
infinitesimal, forx = 0 condition (3.2) can be written in the following form 

(3.3) 
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From the same considerations Eq. (3.1) can be assumed satisfied when x = 0. 
The values of aar may differ from their unperturbed values a: due to the change in the direction 

of the shock wave, defined by the quantity agl@ = i& and due to a change in its velocity 
6W = agat = - iwk. 

To find how a, depends on aglay we will consider the solutions of Eqs (1.7) which take the viscosity 
into account, in the form of an inclined travelling wave resembling a smoothed step of the form 
u, = u,(c), 5 = x - Ay - Wt. The quantities a, are represented in this case as the difference between 
the values of u, at 5 = km. We obtain from (1.7) 

-Wu,+((aR/aua)“-cl~~=-jh2U~/2 (3.4) 

It can be seen that if we introduce a new shock-wave velocity given by the formula W, = W - fA*/2, 
this equation takes the form of an equation for a shock wave normal to the x axis moving with velocity 
W,. Since the quantities A = aglay under consideration are infinitesimal, the difference between Wand 
W, can be neglected and we can assume that a small inclination of the shock wave does not lead to 
changes in the values of [uJ in the linear approximation. Hence, in the approximation adopted, the 
right-hand side of (3.3) may change only due to a change in the velocity W of the shock wave. If we 
assume that there are no perturbations in front of the shock wave (whenx > 0), we obtain the following 
relations for the perturbations of the quantities u, and u, when x = -0 

1 A 

iia = -aiie, Ca = -a$le 

a; =aa,iaw=aU,iaw, a: =[u,] (3.5) 

The quantities a& represent the components of the vector tangential to the shock adiabatic curve and 
a: are the components of the vector from the initial point of the shock adiabatic curve to the point 
characterizing the state behind the shock wave. 

4. THE CONDITIONS FOR EIGENFUNCTION TO EXIST 

It was shown in [9] that instability of the discontinuities may manifest themselves only in the form of 
perturbations which grow exponentially with time. Since we are investigating the stability of fast shock 
waves here, departing perturbations only occur behind the shock wave (X > 0). If we consider 
perturbations of the form exp (i(ly - wt)), these perturbations must be represented, for x = 0, by a 
linear combination of eigenvectors rl, r2 and r3, represented by formulae (2.6). This linear 
combination must satisfy boundary conditions (3.5). The last condition can also be formulated as 
the possibility of expanding the vector represented by (3.5) into vectors q, r2 and r3 or, otherwise, 
as the condition that the vector (3.5) should be orthogonal to the vector orthogonal to the vectors 
rl, r2 and r3 which we will denote by r. Using the orthogonality of the two-dimensional vectors u(11), Us’ 
and LA<*’ and ~(22) (which follows from the symmetry of the matrix ]]&a]] ), we obtain 

r, =(u, (*),p 
2 , -q (*‘k3 II, - u$*‘k, 11) (4.1) 

The above condition for the vectors (3.5) and (4.1) to be orthogonal can be written in the vector form 

(a’-a’o/k,), u(*)=O (4.2) 

a0 = (ap,ai), a’ = (a;,a$), u(*) = (u,‘~‘,u~*)) 

(the scalar product is denoted by a dot). From this equation we determine w/k3, which enables us below 
to find w, using relation (2.5). 

The relation between a; and at can be obtained by differentiating the relations on the discontinuity 
(1.2) with respect to W, assuming I.& is constant, and taking into account the fact that W = 0 for the 
unperturbed wave. We have 

R$,ab = a: (4.3) 
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To simplify Eq. (4.2) we will introduce at the point ul, u2, which represents the state of the unperturbed 
shock wave, a new system of coordinates 41, q2 with axes directed along the eigenvectors of the 
matrix II&ll, corresponding to cl and ~2. In this system of coordinates the matrix llRp(31j will be a 
diagonal matrix with quantities cl and c2 on the principal diagonal, the vector I&~) will have components 
(0, l), while for the components A; and A! of the vectors a’ and aO- along the q2 axis we obtain from 
relation (4.3) 

c,A; = A; 
(4.4) 

Equation (4.2) yields 

A;-AA;wlkj=O 

Hence also from relation (4.4) we have 

co/k3 = c2 

It then follows from Eq. (2.5) that 

l2 /k,2 =0 

This means that when 1 # 0 it is impossible to set up an eigenfunction representing a linear combination 
of departing waves. The case 1 = 0 (the one-dimensional case) must be considered separately since it 
was previously assumed that 1 # 0. One-dimensional interactions were investigated fairly fully in [3], 
whence we can conclude that the shock wave is stable with respect to linear perturbations of the same 
orientation everywhere except for the Jouguet point where W = cl. 

Hence, fast shock waves with W f cl are stable to arbitrary linear perturbations. 

This research was supported by the Russian Foundation for Basic Research (99-01-01150). 
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